题目内容

【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.

(2)连接PO、PC,并把POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

【答案】(1)二次函数的表达式为:y=x2﹣3x﹣4;

(2)存在,P点的坐标为(,﹣2);

(3)此时P点的坐标为:(2,﹣6),四边形ABPC的面积的最大值为18.

析】

试题分析:(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;

(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;

(3)由于ABC的面积为定值,当四边形ABPC的面积最大时,BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.

试题解析:(1)将B、C两点的坐标代入得:

解得:

所以二次函数的表达式为:y=x2﹣3x﹣4;

(2)存在点P,使四边形POP′C为菱形;

设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E

若四边形POP′C是菱形,则有PC=PO;

如图1,连接PP′,则PECO于E,

C(0,﹣4),

CO=4,

OE=EC,

OE=EC=2

y=﹣2;

x2﹣3x﹣4=﹣2

解得:x1=,x2=(不合题意,舍去),

P点的坐标为(,﹣2);

(3)如图2,过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣3x﹣4),设直线BC的解析式为:y=kx+d,

解得:

直线BC的解析式为:y=x﹣4,

则Q点的坐标为(x,x﹣4);

当0=x2﹣3x﹣4,

解得:x1=﹣1,x2=4,

AO=1,AB=5,

S四边形ABPC=S△ABC+S△BPQ+S△CPQ

=ABOC+QPBF+QPOF

=×5×4+(4﹣x)[x﹣4﹣(x2﹣3x﹣4)]+ x[x﹣4﹣(x2﹣3x﹣4)]

=﹣2x2+8x+10

=﹣2(x﹣2)2+18

当x=2时,四边形ABPC的面积最大,

此时P点的坐标为:(2,﹣6),四边形ABPC的面积的最大值为18.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网