题目内容
如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.
求(1)点B'的坐标.(2)直线AM所对应的函数关系式
(1)(-4,0);(2).
解析试题分析:(1)分别令y=0,x=0求出直线y=-x+8与x轴、y轴交点A、B的坐标.根据折叠性质可得进而求得点B'的坐标(2)设OM=m则B'M=BM=8-m
根据勾股定理得;m2+42=(8-m)2,求出m=3,所以,M(0,3)设直线AM的解析式为y=kx+b,图象过(6,0)(0,3)代入可求得所以求出直线AM所对应的函数关系式.
试题解析:(1)A(6,0),B(0,8)
OA=6,OB="8" 根据勾股定理得:AB=10
根据折叠性质可得
A B'=AB=10,
O B'=10-6=4
B'(-4,0)
(2)设OM=m则B'M=BM=8-m
根据勾股定理得;
m2+42=(8-m)2
m=3
M(0,3)
设直线AM的解析式为y=kx+b
解得:
直线AM所对应的函数关系式
考点:1.折叠问题;2.一次函数的解析式;3.一次函数图象与坐标轴交点.
练习册系列答案
相关题目
某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:
x(单位:台) | 10 | 20 | 30 |
y(单位:万元∕台) | 60 | 55 | 50 |
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)