题目内容

【题目】如图,在△ABC中,∠C=150°,AC=4,tanB=.

(1)求BC的长;

(2)利用此图形求tan15°的值(精确到0.1,参考数据:≈1.4,≈1.7,≈2.2).

【答案】(1)BC=16-2;(2) tan15°≈0.3.

【解析】

(1)作ADBCBC的延长线于D,分别在RtACD,RtADB中求出CDBD即可解决问题;

(2)在CB上取一点M,使得CMCA,连接AM,则∠AMC=15°,在RtADM中,根据tan15°==tanAMD计算即可解决问题.

(1)过点AADBC,交BC的延长线于点D,如图①所示.

RtADC中,AC=4.

∵∠ACB=150°,∴∠ACD=30°,

ADAC=2,

CDAC·cos30°=4×=2.

RtABD中,tanB

BD=16,

BCBDCD=16-2.

(2)BC边上取一点M,使得CMAC,连接AM,如图②所示.

∵∠ACB=150°,∴∠AMCMAC=15°,

tan15°=tanAMD≈0.3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网