题目内容
请你观察、思考下列计算过程:因为112=121,所以
121 |
12321 |
1234321 |
12345678987654321 |
分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.
解答:解:∵
=111,
=1111…,
∴
=111 111 111.
故答案为:111 111 111.
12321 |
1234321 |
∴
12345678987654321 |
故答案为:111 111 111.
点评:本题是一道规律性的题目,考查了算术平方根的求法.
练习册系列答案
相关题目
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n | 2 | 3 | 4 | 5 | 6 |
使用的纸片张数 |
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n | 2 | 3 | 4 | 5 | 6 |
使用的纸片张数 |
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n | 2 | 3 | 4 | 5 | 6 |
使用的纸片张数 |
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n | 2 | 3 | 4 | 5 | 6 |
使用的纸片张数 |
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.