题目内容
【题目】在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.
(1)证明:ΔABE≌ΔCAD.
(2)若CE=CP,求证∠CPD=∠PBD.
(3)在(2)的条件下,证明:点D是BC的黄金分割点.
【答案】(1)见解析;(2)见解析;(3)见解析
【解析】
(1)因为△ABC是等边三角形,所以AB=AC,∠BAE=∠ACD=60°,又AE=CD,即可证明ΔABE≌ΔCAD;
(2)设则由等边对等角可得可得以及,故;
(3)可证可得,故由于可得,根据黄金分割点可证点是的黄金分割点;
证明:
(1) ∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠ACD=60°,
在ΔABE与ΔCDA中,AB=AC,∠BAE=∠ACD=60°,AE=CD,
∴△AEB≌△CDA;
(2)由(1)知,
则,
设,
则,
∵,
∴,
∴,
又,
∴;
(3)在和中,
,,
∴,
∴,
∴,
又,
∴,
∴点是的黄金分割点;
练习册系列答案
相关题目