题目内容
【题目】如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足PE2=PAPC,连接CE,AE,OE,OE交CA于点D.
(1)求证:△PAE∽△PEC;
(2)求证:PE为⊙O的切线;
(3)若∠B=30°,AP= AC,求证:DO=DP.
【答案】
(1)解:∵PE2=PAPC,
∴ ,
∵∠APE=∠EPC,
∴△PAE∽△PEC
(2)解:如图1,
连接BE,
∴∠OBE=∠OEB,
∵∠OBE=∠PCE,
∴∠OEB=∠PCE,
∵△PAE∽△PEC,
∴∠PEA=∠PCE,
∴∠PEA=∠OEB,
∵AB为直径,
∴∠AEB=90°,
∴∠OEB+∠OEA=90°,
∵∠PEA+∠OEA=90°,
∴∠OEP=90°,
∵点E在⊙O上,
∴PE是⊙O的切线
(3)解:如图,
过点O作OM⊥AC于M,
∴AM= AC,
∵BC⊥AC,
∴OM∥BC,
∵∠ABC=30°,
∴∠AOM=30°,
∴OM= AM= AC,
∵AP= AC,
∴OM= AP,
∵PC=AC+AP=2AP+AP=3AP,
∴PE2=PA×PC=PA×3PA,
∴PE= PA,
∴OM=PE,
∵∠PED=∠OMD=90°,∠ODM=∠PDE,
∴△ODM≌△PDE,
∴OD=DP
【解析】(1)利用两边对应成比例,夹角相等,两三角形相似即可;(2)连接BE,转化出∠OEB=∠PCE,又由相似得出∠PEA=∠PCE,从而用直径所对的圆周角是直角,转化出∠OEP=90°即可;(3)构造全等三角形,先找出OD与PA的关系,再用等积式找出PE与PA的关系,从而判断出OM=PE,得出△ODM≌△PDE即可.
练习册系列答案
相关题目