题目内容
【题目】某水果公司以2.2元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:
苹果损坏的频率 | 0.106 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润23000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.
【答案】0.1 5
【解析】
根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计苹果的损坏概率为0.1;根据概率计算出完好苹果的质量为10000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.
解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.1左右,
所以苹果的损坏概率为0.1.
根据估计的概率可以知道,在10000千克苹果中完好苹果的质量为10000×0.9=9000千克.
设每千克苹果的销售价为x元,则应有9000x=2.2×10000+23000,
解得x=5.
答:出售苹果时每千克大约定价为5元可获利润23000元.
故答案为:0.1,5.
练习册系列答案
相关题目
【题目】某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元。经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:
售价x(万元/件) | 25 | 30 | 35 |
销售量y(件) | 50 | 40 | 30 |
(1)求y与x之间的函数表达式;
(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?