题目内容

(本题满分10分)如图,直线轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0).

⑴ 求抛物线的解析式;

⑵ 在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

 

【答案】

解:(1)∵当=0时,=3

=0时,=﹣1

(﹣1,0),(0,3)

(3,0)··························1分

设抛物线的解析式为=a(+1)(﹣3)

∴3=a×1×(﹣3)

∴a=﹣1

∴此抛物线的解析式为=﹣( + 1)(﹣3)=- +2+3·····2分

(2)存在∵抛物线的对称轴为:==1···············4分

∴如图对称轴与轴的交点即为Q

=

=

(1,0)··························6分

=时,设的坐标为(1,m)

∴2+m=1+(3﹣m)

∴m=1

(1,1)··························8分

=时,设(1,n)

∴2+n=1+3

∵n>0   ∴n=   ∴(1,

∴符合条件的点坐标为(1,0),(1,1),(1,)·10分

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网