题目内容

【题目】如图(1)在正方形ABCD中,点ECD边上一动点,连接AE,作BFAE,垂足为GADF

1)求证:AFDE

2)连接DG,若DG平分∠EGF,如图(2),求证:点ECD中点;

3)在(2)的条件下,连接CG,如图(3),求证:CGCD

【答案】1)见解析;(2)见解析;(3CGCD,见解析.

【解析】

(1)证明△BAF≌△ADE(ASA)即可解决问题.

(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.

(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.

(1)证明:如图1中,

在正方形ABCD中,AB=AD,∠BAD=∠D=90o

∴∠2+∠3=90°

又∵BF⊥AE,

∴∠AGB=90°

∴∠1+∠2=90°,

∴∠1=∠3

在△BAF与△ADE中,

∠1=∠3 BA=AD ∠BAF=∠D,

∴△BAF≌△ADE(ASA)

∴AF=DE.

(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.

由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD

∴△BAG≌△ADN(AAS)

∴AG=DN,

又DG平分∠EGF,DM⊥GF,DN⊥GE,

∴DM=DN,

∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF

∴△AFG≌△DFM(AAS),

∴AF=DF=DE=AD=CD,

即点E是CD的中点.

(3)延长AE,BC交于点P,由(2)知DE=CD,

∠ADE=∠ECP=90°,∠DEA=∠CEP,

∴△ADE≌△PCE(ASA)

∴AE=PE,

又CE∥AB,

∴BC=PC,

在Rt△BGP中,∵BC=PC,

∴CG=BP=BC,

∴CG=CD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网