题目内容

(2009•孝感模拟)宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;如果单独投资B种产品,则所获利润(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值(如下表)
x15
yA0.63
yB2.810
(1)填空:yA=______;yB=______;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元.
【答案】分析:(1)依图可知yA、yB的答案.
(2)设投资x万元生产B产品,则投资(20-x)万元生产A产品求出w与x的函数关系式.
(3)把w与x的函数关系式用配方法化简可解.
解答:解:由题意得:
(1)yA=0.6x,yB=-0.2x2+3x(4分)

(2)设投资x万元生产B产品,则投资(20-x)万元生产A产品,则
w=0.6(20-x)-0.2x2+3x=-0.2x2+2.4x+12

(3)∵w=-0.2x2+2.4x+12=-0.2(x-6)2+19.2
∴投资6万元生产B产品,14万元生产A产品可获得最大利润19.2万元.
点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网