题目内容

精英家教网如图,在边长为1正方形ABCD中,E、F、G分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是(  )
A、2
B、4
C、2
2
D、3
2
分析:延长DC到D',使CD=CD',G对应位置为G',则FG=FG',作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.由两点之间线段最短可知当E、F、G'、H'、E'在一条直线上时路程最小,再延长AB至K使BK=AB,连接E′K,利用勾股定理即可求出EE′的长.
解答:解:延长DC到D',使CD=CD',G关于C对称点为G',则FG=FG',
同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,
再作A'B'⊥D'A',E的对应位置为E',
精英家教网
则H'E'=HE.
容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,
最小路程为EE'=
(2AB)2+(2BC)2
=
4+4
=2
2

故选C.
点评:本题考查的是最短路线问题,解答此题的关键是画出图形,根据两点之间线段最短的道理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网