题目内容
如图, 梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直线为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值 .
【答案】
【解析】本题主要考查了等腰梯形的性质,轴对称-最短路线问题. 因为直线MN为梯形ABCD的对称轴,所以当A、P、C三点位于一条直线时,PC+PD有最小值
解:连接AC交直线MN于P点,P点即为所求.
∵直线MN为梯形ABCD的对称轴,
∴AP=DP,
∴当A、P、C三点位于一条直线时,PC+PD=AC,为最小值,
∵AD=DC=AB,AD∥BC,
∴∠DCB=∠B=60°,
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠DAC=∠DCA,
∴∠DAC=∠DCA=∠ACB
∵∠ACB+∠DCA=60°,
∴∠DAC=∠DCA=∠ACB=30°,
∴∠BAC=90°,
∵AB=1,∠B=60°
∴AC=tan60°×AB=×1=.
∴PC+PD的最小值为.
练习册系列答案
相关题目