题目内容

(6分)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE。求证:△ABC是等腰三角形。(过D作DG∥AC交BC于G)

分析:利用平行线的性质得出∠GDF=∠CEF进而利用ASA得出△GDF≌△CEF;利用全等三角形的性质以及等腰三角形的判定得出即可。
解答:
证明:过D作DG∥AC交BC于G

∵DG∥AC
∴∠GDF=∠CEF(两直线平行,内错角相等),
在△GDF和△CEF中:∠GDF=∠CEF, DF=EF,∠DFG=∠CFE
∴△GDF≌△CEF(ASA);
∴DG=CE
又∵BD=CE,
∴BD=DG,
∴∠DBG=∠DGB,
∵DG∥AC,
∴∠DGB=∠ACB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形。
点评:本题考查了全等三角形的判定与性质以及等腰三角形的判定,比较简单,判定两三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,需要熟练掌握。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网