题目内容

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是

(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当BEF与COF的面积之和最大时,AE=;(5)OGBD=AE2+CF2

【答案】(1),(2),(3),(5).

【解析】

试题分析:(1)∵四边形ABCD是正方形,

∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,

∴∠BOF+∠COF=90°,

∵∠EOF=90°,

∴∠BOF+∠COE=90°,

∴∠BOE=∠COF,

在△BOE和△COF中,

∴△BOE≌△COF(ASA),

∴OE=OF,BE=CF,

∴EF=OE;故正确;

(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD

∴S四边形OEBF:S正方形ABCD=1:4;故正确;

(3)∴BE+BF=BF+CF=BC=OA;故正确;

(4)过点O作OH⊥BC,

∵BC=1,

∴OH=BC=

设AE=x,则BE=CF=1﹣x,BF=x,

∴S△BEF+S△COF=BEBF+CFOH=x(1﹣x)+(1﹣x)×=﹣(x﹣2+

∵a=﹣<0,

∴当x=时,S△BEF+S△COF最大;

即在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;故错误;

(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,

∴△OEG∽△OBE,

∴OE:OB=OG:OE,

∴OGOB=OE2

∵OB=BD,OE=EF,

∴OGBD=EF2

∵在△BEF中,EF2=BE2+BF2

∴EF2=AE2+CF2

∴OGBD=AE2+CF2.故正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网