题目内容
【题目】如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰经过x轴上的点A,B.
(1)求点C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.
【答案】
【1】 (1).C的坐标(2,)
【2】 (2).y=-x2+4x+
【解析】
(1)连接AC,在菱形ABCD中,CD∥AB,AB=BC=CD=DA,由抛物线对称性可知AC=BC.∴△ABC,△ACD都是等边三角形.可求CD=AD==2,可得点C的坐标为(2,).
(2)由抛物线y=ax2+bx+c的顶点为(2,),可设抛物线的解析式为:y=a(x?2)2+
由(1)可得A(1,0),把A(1,0)代入上式,解得a=-,设平移后抛物线的解析式为y=-(x-2)2+k,把(0,)代入上式得K=5.即可得到平移后抛物线的解析式.
解:(1)连接AC,在菱形ABCD中,CD∥AB,
AB=BC=CD=DA,
由抛物线对称性可知AC=BC.(1分)
∴△ABC,△ACD都是等边三角形.
∴CD=AD==2(2分)
∴点C的坐标为(2,).(3分)
(2)由抛物线y=ax2+bx+c的顶点为(2,),
可设抛物线的解析式为.y=a(x?2)2+
由(1)可得A(1,0),把A(1,0)代入上式,
解得a=-.(5分)
设平移后抛物线的解析式为y=-(x-2)2+k,
把(0,)代入上式得K=5.
∴平移后抛物线的解析式为:
y=-(x-2)2+5(7分)
即y=-x2+4x+.
练习册系列答案
相关题目