题目内容

(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=______,∠XBC+∠XCB=______.

(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.

解:(1)∵∠A=30°,
∴∠ABC+∠ACB=150°,
∵∠X=90°,
∴∠XBC+∠XCB=90°,
∴∠ABC+∠ACB=150°;∠XBC+∠XCB=90°.

(2)不变化.
∵∠A=30°,
∴∠ABC+∠ACB=150°,
∵∠X=90°,
∴∠XBC+∠XCB=90°,
∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)
=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.
分析:本题考查的是三角形内角和定理.已知∠A=30°易求∠ABC+∠ACB的度数.又因为x为90°,所以易求∠XBC+∠XCB.
点评:此题注意运用整体法计算.关键是求出∠ABC+∠ACB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网