题目内容
24、如图,在△ABC中,AB=AC,∠A=20゜,在AB、AC上分别取点E、D,使∠CBD=60°,∠BCE=50°,求∠AED的度数.
分析:作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG,证DF=DG,BC=BG,求出∠BEC,推出BE=BG,求出△EFG是等腰三角形,推出EF=EG,证△DFE≌△DGE,求出△EDB,根据三角形外角性质求出即可.
解答:解:∵AB=AC,∠A=20°,
∴∠ABC=∠ACB=80°,
∴∠ABD=20°,
作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG.
∴四边形DFBC为等腰梯形.
∵∠DBC=∠FCB=60°,
∴△BGC,△DGF都是正三角形,
即BG=CG,
∵∠BCE=50°,∠EBC=80°,
∴∠BEC=50°,
即BE=BC,知△BGE是等腰三角形.
得:∠BGE=80°,∠FGE=40°.
又因∠EFG=∠BDC=40°,
∴△EFG是等腰三角形,EF=GE.
∵DF=DG,
∴△DFE≌△DGE.
∴DE平分∠FDG,
∴∠EDB=30°,
∴∠AED=∠EDB+∠EBD=50°.
答:∠AED的度数是50°.
∴∠ABC=∠ACB=80°,
∴∠ABD=20°,
作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG.
∴四边形DFBC为等腰梯形.
∵∠DBC=∠FCB=60°,
∴△BGC,△DGF都是正三角形,
即BG=CG,
∵∠BCE=50°,∠EBC=80°,
∴∠BEC=50°,
即BE=BC,知△BGE是等腰三角形.
得:∠BGE=80°,∠FGE=40°.
又因∠EFG=∠BDC=40°,
∴△EFG是等腰三角形,EF=GE.
∵DF=DG,
∴△DFE≌△DGE.
∴DE平分∠FDG,
∴∠EDB=30°,
∴∠AED=∠EDB+∠EBD=50°.
答:∠AED的度数是50°.
点评:本题主要考查对等腰三角形的性质和判定,等腰梯形的性质,全等三角形的性质和判定,三角形的外角性质,三角形的内角和定理等知识点的连接和掌握,能综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关题目