题目内容
如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为______
【答案】分析:(1)证明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值;
(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;
(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得的值;然后证明△PME∽△PNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.
解答:解:(1)∵矩形ABCD,
∴AB⊥BC,PA=PC;
∵PE⊥AB,BC⊥AB,
∴PE∥BC,
∴∠APE=∠PCF;
∵PF⊥BC,AB⊥BC,
∴PF∥AB,
∴∠PAE=∠CPF.
∵在△APE与△PCF中,
∴△APE≌△PCF(ASA),
∴PE=CF.
在Rt△PCF中,=tan30°=,
∴=.
(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.
∵PM⊥PN,PE⊥PF,
∴∠EPM=∠FPN,
又∵∠PME=∠PNF=90°,
∴△PME∽△PNF,
∴.
由(1)知,=,
∴=.
(3)答:变化.
证明:如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.
∵PM∥BC,PN∥AB,
∴∠APM=∠PCN,∠PAM=∠CPN,
∴△APM∽△PCN,
∴,得CN=2PM.
在Rt△PCN中,=tan30°=,∴=.
∵PM⊥PN,PE⊥PF,
∴∠EPM=∠FPN,
又∵∠PME=∠PNF=90°,
∴△PME∽△PNF,
∴=.
∴的值发生变化.
点评:本题是几何综合题,考查了相似三角形的判定与性质、矩形的性质、全等三角形的判定与性质、解直角三角形等知识点.本题三问的解题思路是一致的:即都是直接或作辅助线构造直角三角形,通过相似三角形或全等三角形解决问题.
(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;
(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得的值;然后证明△PME∽△PNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.
解答:解:(1)∵矩形ABCD,
∴AB⊥BC,PA=PC;
∵PE⊥AB,BC⊥AB,
∴PE∥BC,
∴∠APE=∠PCF;
∵PF⊥BC,AB⊥BC,
∴PF∥AB,
∴∠PAE=∠CPF.
∵在△APE与△PCF中,
∴△APE≌△PCF(ASA),
∴PE=CF.
在Rt△PCF中,=tan30°=,
∴=.
(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.
∵PM⊥PN,PE⊥PF,
∴∠EPM=∠FPN,
又∵∠PME=∠PNF=90°,
∴△PME∽△PNF,
∴.
由(1)知,=,
∴=.
(3)答:变化.
证明:如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.
∵PM∥BC,PN∥AB,
∴∠APM=∠PCN,∠PAM=∠CPN,
∴△APM∽△PCN,
∴,得CN=2PM.
在Rt△PCN中,=tan30°=,∴=.
∵PM⊥PN,PE⊥PF,
∴∠EPM=∠FPN,
又∵∠PME=∠PNF=90°,
∴△PME∽△PNF,
∴=.
∴的值发生变化.
点评:本题是几何综合题,考查了相似三角形的判定与性质、矩形的性质、全等三角形的判定与性质、解直角三角形等知识点.本题三问的解题思路是一致的:即都是直接或作辅助线构造直角三角形,通过相似三角形或全等三角形解决问题.
练习册系列答案
相关题目
如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足( )
A、a≥
| ||
B、a≥b | ||
C、a≥
| ||
D、a≥2b |