题目内容

把两块全等的直角三角形ABC和DEF 叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O 重合,其中∠ABC=∠DEF=90,∠C=∠F=45,AB=DE=4把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q。
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ,此时AP﹒CQ的值为(    )。将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α。 其中0<α<90 ,则 AP﹒CQ的值是否会改变?答:(   )(填“会”或“不会”)此时AP﹒CQ的值为(     )(不必说明理由)
(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)
(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由。
(1)8,不会,8;
(2)当时,如图2
         过点D作于M, 于 N
         则
         ∵,则
          ∴      
           ∴ 
          当时,如图3
          过点D作 于 G,
          ∵    ∴
          ∴
          ∵         即       
          ∴
           ∴
 (3)在图(2)的情况下,
          
            ∴
           当
练习册系列答案
相关题目