题目内容
【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN=________;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;
(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,四边形AMDC,四边形MNFE和四边形NBHG均是正方形,点P在边EF上,试探究S△ACN ,S△APB ,S△MBH的数量关系.
S△ACN=________;S△MBH=________;S△APB=________;S△ACN ,S△APB,S△MBH的数量关系是________.
【答案】(1)或;(2)证明见解析;(3)见解析.
【解析】
试题(1)分类讨论:当MN为最大线段时;当BN为最大线段时;即已知的两条线段中较长的线段MN可能为斜边或所求的BN也可能为斜边;
(2)由已知“FG是中位线”得BD=2FM,DE=2MN,EC=2NG,由D,E是线段BC的勾股分割点,且EC>DE>BD得出EC2=DE2+DB2,再分别代换为2NG、2MN、2FM,约去系数4,即可得出结论;
(3)由三角形面积公式,分别表示出S△ACN、S△MBH、S△PAB,观察3个式子中,出现的AM2、BN2 、MN2,可得S△APB=S△ACN+S△MBH.
试题解析:(1)分两种情况:
①当MN为最大线段时,
∵点 M、N是线段AB的勾股分割点,
∴BN=;
②当BN为最大线段时,
∵点M、N是线段AB的勾股分割点,
∴BN=;
综上所述:BN的长为或.
(2)∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,
∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,
∴BD=2FM,DE=2MN,EC=2NG,
∵点D,E是线段BC的勾股分割点,且EC>DE>BD,
∴EC2=DE2+DB2 ,
∴4NG2=4MN2+4FM2 ,
∴NG2=MN2+FM2 ,
∴点M,N是线段FG的勾股分割点;
⑶∵四边形AMDC,四边形MNFE和四边形NBHG均是正方形,
∴S△ACN= (AM+MN)AC= (AM+MN)AM= AM2+ MNAM,
S△MBH= (MN+BN)BH= (MN+BN)BN= BN2+ MNBN,
S△PAB= (AM+NM+BN)FN= (AM+MN+BN)MN= MN2+ /span>MNAM+ MNBN,
∴S△APB=S△ACN+S△MBH ,
故答案为S△APB=S△ACN+S△MBH .