题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.
(1)求证:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的长.
【答案】(1)见解析;(2).
【解析】
试题分析:(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,
(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.
(1)证明:∵CD⊥AB,
∴∠BDC=90°.
∴∠A+∠ACD=90°.
∵∠ACB=90°,
∴∠DCB+∠ACD=90°.
∴∠A=∠DCB.
又∵∠ACB=∠BDC=90°,
∴△ABC∽△CBD;
(2)解:∵∠ACB=90°,AC=4,BC=3,
∴AB=5,
∴CD=,
∵CD⊥AB,
∴BD===.
练习册系列答案
相关题目