题目内容
【题目】如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=12 cm,AB=7 cm,求DE的长度.
【答案】2.5cm
【解析】
过C作CF⊥AB的延长线于点F,由条件可证△AFC≌△AEC,得到CF=CE.再由条件∠ABC+∠D=180°,由△FBC≌△EDC,由全等的性质可得BF=ED,问题可得解.
证明:如图,
过C作CF⊥AB的延长线于点F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AD,CF⊥AB,
∴∠BFC=∠CED=90°,
在△AFC和△AEC中,
∴△AFC≌△AEC,
∴AF=AE,CF=CE,
∵∠ABC+∠D=180°,∠ABC+∠FBC=180°,
∴∠FBC=∠EDC,
∴△FBC≌△EDC,
∴BF=ED,
∴AB+AD=AE+ED+AF-BF=2AE,
∵AD=12cm,AB=7cm,
∴19=2AE,
∴AE=9.5cm,
∴DE=AD-AE=12-9.5=2.5cm.
练习册系列答案
相关题目