题目内容
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,CE平分∠ACB,交AB于点E.
(1)求证:AC平分∠DAB;
(2)求证:△PCE是等腰三角形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】(1)连接OC
∵PD切⊙O于点C,
∴OC⊥PD.
又∵AD⊥PD,
∴OC∥AD.
∴∠ACO=∠DAC.
又∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB.
(2)∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB为⊙O的直径,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACE=∠BCE,
∴∠CAO+∠ACE=∠PCB+∠BCE,
∴∠PEC=∠PCE,
∴PC=PE,
即△PCE是等腰三角形.
练习册系列答案
相关题目