题目内容
【题目】如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4;
(1)求证:四边形ACED是平行四边形
(2)求四边形ACEB的周长.
【答案】(1)详见解析;(2)10+2.
【解析】
试题由已知易证AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;
(2)四边形ACED是平行四边形,可得DE=AC=2.在Rt△CDE中,由勾股定理得CD=2,再由D是BC的中点可得BC=2CD=4.在△ABC中,∠ACB=90°,由勾股定理得AB=.再求得EB=EC=4,即可得四边形ACEB的周长.
试题解析:解:(1)证明:∵∠ACB=90°,DE⊥BC,
∴AC∥DE
又∵CE∥AD
∴四边形ACED是平行四边形.
(2)∵四边形ACED是平行四边形.
∴DE=AC=2.
在Rt△CDE中,由勾股定理得CD=.
∵D是BC的中点,
∴BC=2CD=4.
在△ABC中,∠ACB=90°,由勾股定理得AB=.
∵D是BC的中点,DE⊥BC,
∴EB=EC=4.
∴四边形ACEB的周长=AC+CE+EB+BA=10+2.
练习册系列答案
相关题目
【题目】某商场的运动服装专柜,对两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.
第一次 | 第二次 | |
品牌运动服装数/件 | 20 | 30 |
品牌运动服装数/件 | 30 | 40 |
累计采购款/元 | 10200 | 14400 |
(1)问两种品牌运动服的进货单价各是多少元?
(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?