题目内容
【题目】如图,∠1+∠2=180°,∠B=∠3,∠BCD=80°,求∠ADC的度数.
解:∵∠1+∠2=180°,(已知)
∴ ∥ .( )
∴∠B=∠DEC.( )
∵∠B=∠3,(已知)
∴
∴AD∥BC,( )
∴ (两直线平行,同旁内角互补)
∵∠BCD=80°,
∴∠ADC= .
【答案】AB∥DE;同旁内角互补,两直线平行;两直线平行,内错角相等;∠3=∠DEC;同位角相等,两直线平行;100°.
【解析】
根据平行线的判定得出AB∥DE,根据平行线的性质得出∠B=∠DEC,求出∠3=∠DEC,根据平行线的判定得出AD∥BC;根据平行线的性质得出∠ADC+∠BCD=180°,即可求出答案.
解:∵∠1+∠2=180°,(已知)
∴AB∥DE.(同旁内角互补,两直线平行)
∴∠B=∠DEC.(两直线平行,同位角相等)
∵∠B=∠3,(已知)
∴∠3=∠DEC
∴AD∥BC,(内错角相等,两直线平行)
∴∠ADC+∠BCD=180°,(两直线平行,同旁内角互补)
∵∠BCD=80°,∴∠ADC=100°.
故答案为:AB∥DE;同旁内角互补,两直线平行;两直线平行,内错角相等;∠3=∠DEC;同位角相等,两直线平行;100°.
【题目】某商场设立了一个可以自由旋转的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组落在奖品“铅笔”区域的统计数据:
转动转盘的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数 | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的成功率 |
(1).计算并完成表格(精确到0.01);
(2).请估计,当很大时,落在“铅笔”区域的频率将会接近______(精确到0.1).
(3).假如你去转动该转盘一次,你获得铅笔的成功率约是______.