题目内容

已知:如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,PA是⊙O的切线,A为切点,割线PBD过圆心,交⊙O于另一点D,连接CD.
(1)求证:PABC;
(2)求⊙O的半径及CD的长.
(1)证明:∵PA是⊙O的切线,
∴∠PAB=∠2.
又∵AB=AC,
∴∠1=∠2,
∴∠PAB=∠1.
∴PABC.

(2)连接OA交BC于点G,则OA⊥PA;
由(1)可知,PABC,
∴OA⊥BC.
∴G为BC的中点,
∵BC=24,
∴BG=12.
又∵AB=13,
∴AG=5.
设⊙O的半径为R,则OG=OA-AG=R-5,
在Rt△BOG中,
∵OB2=BG2+OG2
∴R2=122+(R-5)2
∴R=16.9,OG=11.9;
∵BD是⊙O的直径,
∴DC⊥BC.
又∵OG⊥BC,
∴OGDC.
∵点O是BD的中点,
∴DC=2OG=23.8.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网