题目内容
【题目】如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).
(1)求抛物线的表达式;
(2)证明:四边形AOBC的两条对角线互相垂直;
(3)在四边形AOBC的内部能否截出面积最大的DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.
【答案】(1)、y=x2﹣x+4;(2)、证明过程见解析;(3)、最大值为12,此时D点坐标为(2,0)
【解析】
试题(1)、根据抛物线经过点A(4,0),B(0,4),C(6,6),利用待定系数法,求出抛物线的表达式即可;(2)、利用两点间的距离公式分别计算出OA=4,OB=4,CB=2,CA=2,则OA=OB,CA=CB,根据线段垂直平分线定理的逆定理得到OC垂直平分AB,所以四边形AOBC的两条对角线互相垂直;(3)、如图2,利用两点间的距离公式分别计算出AB=4,OC=6,设D(t,0),根据平行四边形的性质四边形DEFG为平行四边形得到EF∥DG,EF=DG,再由OC垂直平分AB得到△OBC与△OAC关于OC对称,则可判断EF和DG为对应线段,所以四边形DEFG为矩形,DG∥OC,则DE∥AB,于是可判断△ODE∽△OAB,利用相似比得DE=t,接着证明△ADG∽△AOC,利用相似比得DG=(4﹣t),所以矩形DEFG的面积=DEDG=t(4﹣t)=﹣3t2+12t,然后根据二次函数的性质求平行四边形DEFG的面积的最大值,从而得到此时D点坐标.
试题解析:(1)、设该抛物线的解析式为y=ax2+bx+c, 根据题意得,解得,
∴抛物线的表达式为y=x2﹣x+4;
(2)、如图1,连结AB、OC, ∵A(4,0),B(0,4),C(6,6),
∴OA=4,OB=4,CB=2,CA=2,
∴OA=OB,CA=CB, ∴OC垂直平分AB, 即四边形AOBC的两条对角线互相垂直;
(3)、能. 如图2,AB=4,OC=6,设D(t,0),
∵四边形DEFG为平行四边形, ∴EF∥DG,EF=DG, ∵OC垂直平分AB,
∴△OBC与△OAC关于OC对称, ∴EF和DG为对应线段, ∴四边形DEFG为矩形,DG∥OC,
∴DE∥AB,∴△ODE∽△OAB,∴=,即=,解得DE=t, ∵DG∥OC,
∴△ADG∽△AOC,∴=,即=,解得DG=(4﹣t),
∴矩形DEFG的面积=DEDG=t(4﹣t)=﹣3t2+12t=﹣3(t﹣2)2+12,
当t=2时,平行四边形DEFG的面积最大,最大值为12,此时D点坐标为(2,0).