题目内容
【题目】如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.
(1)求证:△CDE∽△CBF;
(2)若B为AF的中点,CB=3,DE=1,求CD的长.
【答案】(1)证明见解析;(2)CD=
【解析】试题分析:(1)如图,通过证明∠D=∠1,∠2=∠4即可得;
(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.
试题解析:(1)∵四边形ABCD是矩形,
∴∠D=∠1=∠2+∠3=90° ,
∵CF⊥CE,
∴∠4+∠3=90°,
∴∠2=∠4,
∴△CDE∽△CBF;
(2)∵四边形ABCD是矩形,
∴CD=AB,
∵B为AF的中点,
∴BF=AB,
∴设CD=BF=x,
∵△CDE∽△CBF,
∴,
∴ ,
∵x>0,
∴x=,
即:CD=.
练习册系列答案
相关题目
【题目】某商店购进一批单价为8元的商品,经调研发现,这种商品每天的销售量y(件)是关于销售单价x(元)的一次函数,其关系如下表:
x(元) | 10 | 11 | 12 | 13 | 14 |
y(件) | 100 | 90 | 80 | 70 | 60 |
(1)求y与x之间的关系式;
(2)设商店每天销售利润为w(元),求出w与x之间的关系式,并求出每天销售单价定为多少时利润最大?