题目内容
【题目】细心观察图,认真分析各式,然后解答问题:
;
;
;
(1)请用含(为正整数)的等式表示上述交化规律:______;
(2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______;
(3)利用上面的结论及规律,请在图中作出等于的长度;
(4)若表示三角形面积,,,,计算出的值.
【答案】(1);(2)直角边的平方和等于斜边的平方;(3)见解析;(4).
【解析】
(1)观察已知各式,归纳总结规律即可得;
(2)根据等式和图形即可得;
(3)先作的垂线,再在垂线上截取,连接,可得,同理可作出点,连接即为所求;
(4)先分别求出的值,再归纳总结出一般规律得出的值,从而可得的值,然后代入求和即可.
(1)观察已知各式可得,各式的变化规律为
故答案为:;
(2)结合等式和图形可得,直角三角形两条直角边与斜边的关系为:直角边的平方和等于斜边的平方
故答案为:直角边的平方和等于斜边的平方;
(3)先作的垂线,再在垂线上截取,连接,即可得,同理可作点,连接,则即为所求,如图所示:
(4)
归纳类推得:
当时,
则
.
练习册系列答案
相关题目
【题目】某地城管需要从甲、乙两个仓库向A、B两地分别运送10吨和5吨的防寒物资,甲、乙两仓库分别有8吨、7吨防寒物资.从甲、乙两仓库运送防寒物资到A、B两地的运费单价(元/吨)如表1,设从甲仓库运送到A地的防寒物资为x吨(如表2).
表1
甲仓库 | 乙仓库 | |
A地 | 80 | 100 |
B地 | 60 | 40 |
表2
甲仓库 | 乙仓库 | |
A地 | 10-x | |
B地 |
(1)完成表2;
(2)求运送的总运费y(元)与x(吨)之间的函数表达式,并直接写出x的取值范围;
(3)求最低总运费.