题目内容
【题目】如图1,抛物线交轴于点和点,交轴于点,一次函数的图象经过点,,点是抛物线上第二象限内一点.
(1)求二次函数和一次函数的表达式;
(2)过点作轴的平行线交于点,作的垂线交于点,设点的横坐标为,的周长为.
①求关于的函数表达式;
②求的周长的最大值及此时点的坐标;
(3)如图2,连接,是否存在点,使得以,,为顶点的三角形与相似?若存在,直接写出点的横坐标;若不存在,请说明理由.
【答案】(1)抛物线为y= -x2-x+4;一次函数的表达式为y=x+4;(2)①关于的函数表达式为,②的周长的最大值为 ,此时点P;(3)点的横坐标为 或.
【解析】
(1)把点A、B、C的坐标代入抛物线或直线表达式,即可求解;
(2)设点P坐标为(t,-t2-t+4),令-t2-t+4=x+4,解得:x= ,PD= ,利用△PDM∽△CBO,即可求解;
(3)分∠PCM=∠CBO、∠PCM=∠BCO,两种情况求解即可.
解:(1)把点和点代入抛物线,
得,解得,∴抛物线为;
令,,解得或,
∴,
把,代入一次函数,
得,解得,∴一次函数的表达式为;
(2)由题意,,,
∴,周长为12,
∵,,
令,解得,
∴,
∵轴,
∴,
∵,
∴,
∴,
∴,
∴关于的函数表达式为,
∵,
∴当时,的周长的最大值为,
此时点;
(3)存在,点的横坐标为或.
①如图1,当时,
即,此时,
令,
解得(舍去)或;
②如图2,当时,
即,作点关于直线的对称点,
直线交抛物线于另一点即为所求的点,作轴于.
易得,,得,,
∴点,
可得直线的表达式为,求得点的横坐标为.
故答案为:(1)抛物线为y= -x2-x+4;一次函数的表达式为y=x+4;(2)①关于的函数表达式为,②的周长的最大值为 ,此时点P;(3)点的横坐标为 或.
【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:
“祖冲之奖”的学生成绩统计表:
分数分 | 80 | 85 | 90 | 95 |
人数人 | 4 | 2 | 10 | 4 |
根据图表中的信息,解答下列问题:
这次获得“刘徽奖”的人数是多少,并将条形统计图补充完整;
获得“祖冲之奖”的学生成绩的中位数是多少分,众数是多少分;
在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“”,“”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.