题目内容
【题目】如图所示,已知双曲线y=(x<0)和 y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,,则k=_____.
【答案】﹣4
【解析】
连接OB,OC,作BE⊥OP于E,CF⊥OP于F,先证得S△OBC=S△ABC=6,由,得出S△OPB=2,S△OPC=4,根据反比例函数系数k的几何意义得出S△OBE=,进一步得出S△PBE=,通过证得△BEP∽△CFP,得出S△CFP=2,然后根据S△OCF=S△OBC-S△OPB-S△CFP求得△OCF的面积为2,从而求得k的值.
解:如图,连接OB,OC,作BE⊥OP于E,CF⊥OP于F.
∵OA∥BC,
∴S△OBC=S△ABC=6
∵PB:PC=1:2,
∴S△OPB=2,S△OPC=4,
∵,
∴.
∵△BEP∽△CFP,
∴,
∴,
∴S△OCF=S△OBC-S△OPB-S△CFP=6-2-2=2,
∴k=﹣4.
故答案为:﹣4.
练习册系列答案
相关题目