题目内容

如图所示,在对△ABC依次进行轴对称和平移两种变换后得到△A1A1C1
(1)在坐标系内画出轴对称变换的图形,并说明两次变换的步骤.
(2)设点P(a,b)为△ABC的边AB上任一点,依次写出这两次变换后点P对应的坐标.
分析:(1)结合两三角形的位置关系,可得出先将△ABC关于y轴对称,然后向右平移4个单位,向下平移5个单位,即可得出△A1A1C1
(2)根据关于y轴对称的点的坐标,纵坐标相等,横坐标互为相反数,结合平移的特点即可得出两次变换后点P对应的坐标.
解答:解:轴对称变换后的图形如图所示:△A'B'C'.
变换的步骤为:将△ABC关于y轴对称,然后向右平移4个单位,向下平移5个单位,

(2)点P关于y轴对称的点的坐标为(-a,b),
再向右平移4个单位,向下平移5个单位,可得点P的对应点坐标为(-a+5,b-4).
点评:本题考查了平移变换及轴对称变换的特点,解答本题的关键是仔细观察变换前后的图形,另外要求同学们掌握关于y轴对称的点的坐标.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网