题目内容
【题目】九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 | 0.5 | |
戏剧 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合计 | 1 |
根据图表提供的信息,解答下列问题:
(1)九年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2 人恰好是乙和丙的概率.
【答案】(1)40人;(2)15%;(3)
【解析】
(1)用散文的频数除以其频率即可求得样本总数;
(2)根据其他类的频数和总人数求得其百分比即可;
(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
解:(1)∵喜欢散文的有 10 人,频率为 0.25,
∴总人数=10÷0.25=40(人);
(2)在扇形统计图中,“其他”类所占的百分比 ×100%=15%,
类别 | 频数(人数) | 频率 |
小说 | 20 | 0.5 |
戏剧 | 4 | 0.1 |
散文 | 10 | 0.25 |
其他 | 6 | 0.15 |
合计 | 40 | 1 |
故答案为:15%;
(3)画树状图,如图所示:
所有等可能的情况有 12 种,其中恰好是丙与乙的情况有 2 种,
∴P(丙和乙)=.
练习册系列答案
相关题目