题目内容
如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形.△OAB的外接圆交y轴的正半轴于点C.(1)点B的坐标是
(2)过点C的圆的切线交x轴于点D,则图中阴影部分的面积是
(3)若OH⊥AB于点H,点P在线段OH上.点Q在y轴的正半轴上,OQ=PH,PQ与OB交于点M.
①当△OPM为等腰三角形时,求点Q的坐标;
②探究线段OM长度的最大值是多少,直接写出结论.
分析:(1)由于OA是等边三角形的边,又是圆的弦,过B点作OA的垂线,根据等边三角形的性质,可求B点坐标,连接AC,则∠OCA=∠OBA=60°,解直角△OCA可求OC.
(2)因为∠COA=90°,所以CA为直径,CD为圆的切线,∠OCA=60°,所以∠DCO=30°,解直角△OCD可求OD,取AC的中点(圆心)为O',用阴影部分面积=△OCD面积+△OO'C面积-扇形OO'C面积可求解.
(3)①设点Q的坐标为(0,t),计算OH的长,△OPM为等腰三角形,有三种可能:OP=OM,OM=PM,OP=PM,根据每一种情况下的图形特征,分别求解.
(2)因为∠COA=90°,所以CA为直径,CD为圆的切线,∠OCA=60°,所以∠DCO=30°,解直角△OCD可求OD,取AC的中点(圆心)为O',用阴影部分面积=△OCD面积+△OO'C面积-扇形OO'C面积可求解.
(3)①设点Q的坐标为(0,t),计算OH的长,△OPM为等腰三角形,有三种可能:OP=OM,OM=PM,OP=PM,根据每一种情况下的图形特征,分别求解.
解答:解:(1)过点B作OA的垂线,垂足为G,
∵A(2,0),∴OA=2,OG=
OA=1,
设B点坐标为(1,t),则
=2,
∴t=
,∴B(1,
)(1分)
连接AC,
则∠OCA=∠OBA=60°,∴
=tan60°,
OC=
=
=
,
∴C(0,
).
(2)∵∠COA=90°,
∴CA为直径,
又∵CD为圆的切线,∠OCA=60°,
∴∠DCO=30°,
∴OD=tan∠DCO•OC=
×
=
,
∵AC是⊙O的直径,BG为△OAB的边OA的中线,
∴O′为△ABC外接圆的圆心,
∵∠OCA=60°,∴∠OCA=30°,∠OO′C=60°,
S阴影=S△OCD+S△OO'C-S扇形OO'C=
×
×
+
×
×1-
=
.
(3)①设点Q的坐标为(0,t),
OH=OA×cos60°=
,
(I)若OP=OM,∠OPM=∠OMP=75°,
∴∠OQP=45°,
过点P做PE⊥OA,垂足为E,则有:OE=
EP,
即t-
(
-t)=
(
-t),
解得:t=1,即点Q的坐标为(0,1).
(II)若OM=PM,则∠MOP=∠MPO=30°,
∴PQ∥OA,从而OQ=0.5OP,
即t=
(
-t),
解得t=
即点的坐标为(0,
),
(III)若OP=PM,∠POM=∠PMO=∠COB,此时PQ∥OC,不满足题意.
②线段OM的长的最大值为
.
∵A(2,0),∴OA=2,OG=
1 |
2 |
设B点坐标为(1,t),则
12+t2 |
∴t=
3 |
3 |
连接AC,
则∠OCA=∠OBA=60°,∴
OA |
OC |
OC=
OA |
tan60° |
2 | ||
|
2
| ||
3 |
∴C(0,
2
| ||
3 |
(2)∵∠COA=90°,
∴CA为直径,
又∵CD为圆的切线,∠OCA=60°,
∴∠DCO=30°,
∴OD=tan∠DCO•OC=
| ||
3 |
2
| ||
3 |
2 |
3 |
∵AC是⊙O的直径,BG为△OAB的边OA的中线,
∴O′为△ABC外接圆的圆心,
∵∠OCA=60°,∴∠OCA=30°,∠OO′C=60°,
S阴影=S△OCD+S△OO'C-S扇形OO'C=
1 |
2 |
2 |
3 |
2
| ||
3 |
1 |
2 |
2
| ||
3 |
60π×
| ||||
180 |
5
| ||
9 |
(3)①设点Q的坐标为(0,t),
OH=OA×cos60°=
3 |
(I)若OP=OM,∠OPM=∠OMP=75°,
∴∠OQP=45°,
过点P做PE⊥OA,垂足为E,则有:OE=
3 |
即t-
1 |
2 |
3 |
| ||
2 |
3 |
解得:t=1,即点Q的坐标为(0,1).
(II)若OM=PM,则∠MOP=∠MPO=30°,
∴PQ∥OA,从而OQ=0.5OP,
即t=
1 |
2 |
3 |
解得t=
| ||
3 |
| ||
3 |
(III)若OP=PM,∠POM=∠PMO=∠COB,此时PQ∥OC,不满足题意.
②线段OM的长的最大值为
3 |
4 |
点评:本题考查了正三角形与圆,圆的切线性质,等腰三角形条件的探求方法,面积求法及分类讨论的思想,具有较强的综合性.
练习册系列答案
相关题目