题目内容
(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.
【答案】分析:作矩形A1B1C1D1四条边的中点E1,F1,G1,H1;连接H1E1,E1F1,G1F1,G1H1.四边形E1F1G1H1即为菱形;
还可以在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合;以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连接H2F2,则四边形A2E2F2H2为菱形.
解答:解:(1)所作菱形如图①,②所示.
说明:作法相同的图形视为同一种.例如类似图③,图④的图形视为与图②是同一种.
(作出一个图形得3分)
(2)图①的作法:
作矩形A1B1C1D1四条边的中点E1,F1,G1,H1;
连接H1E1,E1F1,G1F1,G1H1.
四边形E1F1G1H1即为菱形.
图②的作法:
在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合;
以A2为圆心,A2E2为半径画弧,交A2D2于H2;
以E2为圆心,A2E2为半径画弧,交B2C2于F2;
连接H2F2,则四边形A2E2F2H2为菱形.
(写对一个作法得2分)
(此题答案不惟一,只要画法及作法合理,正确,均可酌情得分.)
点评:此题综合考查了菱形和矩形的性质以及一些基本作图的综合应用.
还可以在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合;以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连接H2F2,则四边形A2E2F2H2为菱形.
解答:解:(1)所作菱形如图①,②所示.
说明:作法相同的图形视为同一种.例如类似图③,图④的图形视为与图②是同一种.
(作出一个图形得3分)
(2)图①的作法:
作矩形A1B1C1D1四条边的中点E1,F1,G1,H1;
连接H1E1,E1F1,G1F1,G1H1.
四边形E1F1G1H1即为菱形.
图②的作法:
在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合;
以A2为圆心,A2E2为半径画弧,交A2D2于H2;
以E2为圆心,A2E2为半径画弧,交B2C2于F2;
连接H2F2,则四边形A2E2F2H2为菱形.
(写对一个作法得2分)
(此题答案不惟一,只要画法及作法合理,正确,均可酌情得分.)
点评:此题综合考查了菱形和矩形的性质以及一些基本作图的综合应用.
练习册系列答案
相关题目