题目内容
【题目】学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示,已知每个菱形图案的边长为10cm,其中一个内角为60°.
(1)求一个菱形图案水平方向的对角线长;
(2)若d=26,纹饰的长度L能否是6010cm?若能,求出菱形个数;若不能,说明理由.
【答案】(1)一个菱形图案水平方向的对角线长30cm;(2)纹饰的长度L能是6010cm,菱形个数为231个.
【解析】
(1)连接AC,BD交于点E,利用菱形的性质及∠A=60°可得出△ABD为等边三角形,进而可得出∠ABE=60°,在△ABE中,通过解直角三角形可得出AE的长度,再将其代入AC=2AE中即可求出结论;
(2)设菱形的个数为x,利用L的长度=AC的长度+d的长度×(菱形的个数-1),即可得出关于x的一元一次方程,解之即可求出x的值,由该值为正整数可得出纹饰的长度L能是6010cm,此题得解.
(1)连接AC,BD交于点E,如图所示.
∵四边形ABCD为菱形,∠A=60°,
∴AB=AD,AC=2AE,AE⊥BD,
∴△ABD为等边三角形,
∴∠ABE=60°.
在△ABE中,AB=10cm,∠ABE=60°,∠AEB=90°
∴AE=ABsin∠ABE=15cm,
∴AC=2AE=30cm.
∴一个菱形图案水平方向的对角线长30cm.
(2)设菱形的个数为x,
依题意,得:30+26(x﹣1)=6010,
解得:x=231.
∴纹饰的长度L能是6010cm,菱形个数为231个.
练习册系列答案
相关题目