题目内容
【题目】如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:
(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若为等腰三角形,求此时正方形的边长.
【答案】(1)不变,;(2)正方形ADEF的边长为或或.
【解析】
(1)作交延长线于,证明,从而可得 ,继而根据三角形面积公式进行计算即可;
(2)分、、三种情况分别讨论求解即可.
(1)作交延长线于,
∵正方形中,,,
∴,
∵,∴,
∴,
∵矩形中,,
∴,∴,
∴,
∴;
(2)①当时,作 ,
∵正方形中,,
∴,∴,
同(1)可得≌,
∴, ∴,
∴;
②当时,,
∵正方形中,,,
∴,∴≌,
∴,
∵矩形中,,
∴ ;
③当时,作,
同理得, ,
∴;
综上,正方形ADEF的边长为或或.
练习册系列答案
相关题目