题目内容

【题目】如图,已知直线的函数表达式为,且轴,轴分别交于两点,动点点开始在线段上以每秒2个单位长度的速度向点移动,同时动点点开始在线段上以每秒1个单位长度的速度向点移动,设点P、Q移动的时间为秒.

(1)为何值时,是以PQ为底的等腰三角形?

(2)求出点P、Q的坐标;(用含的式子表达)

(3)为何值时,的面积是ABO面积的

【答案】(1)(2)的坐标分别是,(t,0)(3)t1=2秒或,t2=3

【解析】

(1)若△APQ是以PQ为底的等腰三角形,那么AQ=AP时,由解析式可得A(6,0),B(0,8),再利用勾股定理得AB=10,然后可以把AQAPt表示,因此得到关于t的方程,解方程即可;

(2)如图,过Q点分别向x轴,y轴引垂线,垂足分别是M,N,设Q(x,y)由题意可知BQ=2t,AP=t,利用△BQN∽△QMA∽△BOA的对应边成比例就可以用t分别表示x、y,也就求出了点P、Q的坐标;

(3)根据(1)(2)知道,△APQ的面积=AP×QM,AOB的面积=×6×8=24,因此可以得到关于t的方程,解方程即可解决问题.

(1)当AQ=AP时,是以PQ为底的等腰三角形.

由解析式可得A(6,0),B(0,8),

由勾股定理得,AB=10,

AQ=10-2t,AP=t,

10-2t=t,

(秒)

时,是以PQ为底的等腰三角形;

(2)过Q点分别向x轴,y轴引垂线,垂足分别是M、N,

Q(x,y),由题意可知BQ=2t,AP=t,

BQN∽△QMA∽△BOA,

的坐标分别是,(t,0);

(3)的面积=AOB的面积=

解得t1=2,t2=3,

t1=2秒或t2=3秒时,的面积是△ABO面积的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网