题目内容
【题目】如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则 k的值为______.
【答案】
【解析】
作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则 AG⊥BC,先求得△AOE≌△BAG,得出 AG=OE=n,BG=AE=1,从而求得 B(n+1, 1﹣n),根据 k=n×1=(n+1)(1﹣n)得出方程,解方程即可.
作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,
如图所示:则AG⊥BC,
∵∠OAB=90°,
∴∠OAE+∠BAG=90°,
∵∠OAE+∠AOE=90°,
∴∠AOE=∠GAB,
在△AOE和△BAG中,,
∴△AOE≌△BAG(AAS),
∴OE=AG,AE=BG,
∵点A(n,1),
∴AG=OE=n,BG=AE=1,
∴B(n+1,1﹣n),
∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,
解得:n= (负值舍去),
∴n= ,
∴k=;
故答案为:.
【题目】某批足球的质量检测结果如下:
抽取足球数n | 100 | 200 | 400 | 600 | 800 | 1000 |
合格的频数m | 93 | 192 | 384 | 564 | 759 | 950 |
合格的频率 | 0.93 | 0.96 | 0.96 | 0.94 |
(1)填写表中的空格;(结果保留0.01)
(2)画出合格的频率的折线统计图;
(3)从这批足球任意抽取的一只足球是合格品的概率是多少?并说明理由.
【题目】为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩.数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
整理、描述数据:
成绩/分 | 88 | 89 | 90 | 91 | 95 | 96 | 97 | 98 | 99 |
学生人数 | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
数据样本数据的平均数、众数和中位数如下表
平均数 | 众数 | 中位数 |
93 |
应用数据
(1)由上表填空:________,________,________,________,
(2)根据所给数据,如果该校想确定七年级前的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为________分.
(3)根据数据分析,该校决定在七年级授予测评成绩前的学生“禁毒小卫士”荣誉称号.请估计评选该荣誉称号的最低分数,并说明理由.