题目内容

观察下列等式:
1
3
+
2
=
(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
1
4
+
3
=
(
4
-
3
)
(
4
+
3
)(
4
-
3
)
=
4
-
3
,请你从上述等式中找出规律,并利用这一规律计算(
2
3
+
2
+
2
4
+
3
+
2
5
+
4
+
…+
2
2012
+
2011
)•(
2012
+
2
)=
4020
4020
分析:先将第一个括号内的各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,由此可求出第一个括号内代数式的值,进而可根据平方差公式求出整个代数式的值.
解答:解:原式=2(
3
-
2
+
4
-
3
+
5
-
4
+…+
2012
-
2011
)(
2012
+
2

=2(
2012
-
2
)(
2012
+
2

=2×2010=4020.
故答案为:4020.
点评:本题考查了分母有理化的知识,能够发现式子中的规律是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网