题目内容

51、如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,
求证:BE=DF.
分析:可先证四边形ABCD是平行四边形,再证△ABE≌△CDF,即可证明BE=DF.
解答:证明:∵AB=CD,BC=AD,
∴四边形ABCD是平行四边形.
∴AB∥CD.
∴∠BAE=∠DCF.
又∵AE=CE,
∴△ABE≌△CDF(SAS).
∴BE=EF.
点评:此题主要考查平行四边形的判定和性质以及全等三角形的判定.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网