题目内容
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠ABC=∠CAD.
(1)若∠ABC=20°,则∠OCA的度数为 ;
(2)判断直线AD与⊙O的位置关系,并说明理由;
(3)若OD⊥AB,BC=5,AB=8,求⊙O的半径.
【答案】
(1)70°;(2)相切;(3)
【解析】
试题分析:(1)连接OA,根据圆周角定理可求得∠AOC的度数,再根据圆的基本性质即可求得结果;
(2)延长AO与⊙O相交于点E,连接EC.先根据圆周角定理求得∠ECA=90°,再结合ABC=∠AEC,∠ABC=∠CAD,可得∠EAC+∠CAD=90°,即可证得结论;
(3)设OD与AB的交点为点G.根据垂径定理可得AG=GB=4. AC=BC=5,在Rt△ACG中,可得GC=3.在Rt△OGA中,设OA=x,根据勾股定理即可列方程求解.
(1)连接OA
∵∠ABC=20°
∴∠AOC=40°
∵OA=OC
∴∠OCA=70°;
(2)延长AO与⊙O相交于点E,连接EC.
∵AE是⊙O的直径,
∴∠ECA=90°,
∴∠EAC+∠AEC=90°.
又∵∠ABC=∠AEC,∠ABC=∠CAD,
∴∠EAC+∠CAD=90°.
即OA⊥AD,而点A在⊙O上,
∴直线AD与⊙O相切;
(3)设OD与AB的交点为点G.
∵OD⊥AB,
∴AG=GB=4. AC=BC=5,
在Rt△ACG中,可得GC=3.
在Rt△OGA中,设OA=x,
由OA2=OG2+AG2,得x2=(x-3)2+42
解得x=,即⊙O的半径为.
考点:圆的综合题
点评:圆的综合题是初中数学的重点和难点,在中考中极为常见,一般压轴题形式出现,难度较大.
练习册系列答案
相关题目