题目内容

如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.

(1)AD是⊙O的切线吗?为什么?
(2)若OD⊥AB,BC=5,求⊙O的半径.
(1)证明见解析;(2)⊙O的半径为5.

试题分析:(1)理解OA,根据圆周角定理求出∠O,求出∠OAC,即可求出∠OAD=90°,根据切线的判定推出即可.
(2)求出等边三角形OAC,求出AC,即可求出答案.
试题解析:(1)AD是⊙O的切线,理由如下:连接OA,

∵∠B=30°,
∴∠O=60°,
∵OA=OC,
∴∠OAC=60°,
∵∠CAD=30°,
∴∠OAD=90°,
又∴点A在⊙O 上,
∴AD是⊙O的切线;
(2)∵∠OAC=∠O=60°,
∴∠OCA=60°,
∴△AOC是等边三角形,
∵OD⊥AB,
∴OD垂直平分AB,
∴AC=BC=5,
∴OA=5,
即⊙O的半径为5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网