题目内容
如图1所示,在正方形ABCD中,AB=1,
是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=
时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.
AC |
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=
5 |
6 |
(1)证明:∵∠DEF=45°,
∴∠DFE=90°-∠DEF=45°.
∴∠DFE=∠DEF.
∴DE=DF.
又∵AD=DC,
∴AE=FC.
∵AB是圆B的半径,AD⊥AB,
∴AD切圆B于点A.
同理:CD切圆B于点C.
又∵EF切圆B于点G,
∴AE=EG,FC=FG.
∴EG=FG,即G为线段EF的中点.
(2)根据(1)中的线段之间的关系,得EF=x+y,DE=1-x,DF=1-y,
根据勾股定理,得:
(x+y)2=(1-x)2+(1-y)2
∴y=
(0<x<1).
(3)当EF=
时,由(2)得EF=EG+FG=AE+FC,
即x+
=
,
解得x1=
,x2=
.
经检验x1=
,x2=
是原方程的解.
①当AE=
时,△AD1D∽△ED1F,
证明:设直线EF交线段DD1于点H,由题意,得:
△EDF≌△ED1F,EF⊥DD1且DH=D1H.
∵AE=
,AD=1,
∴AE=ED.
∴EH∥AD1,∠AD1D=∠EHD=90°.
又∵∠ED1F=∠EDF=90°,
∴∠FD1D=∠AD1D.
∴D1F∥AD,
∴∠ADD1=∠DD1F=∠EFD=45°,
∴△ED1F∽△AD1D.
②当AE=
时,△ED1F与△AD1D不相似.
∴∠DFE=90°-∠DEF=45°.
∴∠DFE=∠DEF.
∴DE=DF.
又∵AD=DC,
∴AE=FC.
∵AB是圆B的半径,AD⊥AB,
∴AD切圆B于点A.
同理:CD切圆B于点C.
又∵EF切圆B于点G,
∴AE=EG,FC=FG.
∴EG=FG,即G为线段EF的中点.
(2)根据(1)中的线段之间的关系,得EF=x+y,DE=1-x,DF=1-y,
根据勾股定理,得:
(x+y)2=(1-x)2+(1-y)2
∴y=
1-x |
1+x |
(3)当EF=
5 |
6 |
即x+
1-x |
1+x |
5 |
6 |
解得x1=
1 |
3 |
1 |
2 |
经检验x1=
1 |
3 |
1 |
2 |
①当AE=
1 |
2 |
证明:设直线EF交线段DD1于点H,由题意,得:
△EDF≌△ED1F,EF⊥DD1且DH=D1H.
∵AE=
1 |
2 |
∴AE=ED.
∴EH∥AD1,∠AD1D=∠EHD=90°.
又∵∠ED1F=∠EDF=90°,
∴∠FD1D=∠AD1D.
∴D1F∥AD,
∴∠ADD1=∠DD1F=∠EFD=45°,
∴△ED1F∽△AD1D.
②当AE=
1 |
3 |
练习册系列答案
相关题目