题目内容

如图所示,AD是△ABC的中线,DF⊥AC,DE⊥AB,垂足分别为F,E,BE=CF.求证:AD平分∠BAC.
分析:先证Rt△BDE≌Rt△CDF,所以根据全等三角形的对应边相等推知DE=DF.再结合已知条件“DF⊥AC,DE⊥AB”可以证得结论.
解答:证明:如图,∵AD是△ABC的中线,
∴BD=CD.
又∵DF⊥AC,DE⊥AB,
∴∠BED=∠CFD=90°,
∴在Rt△BDE与Rt△CDF中,
BD=CD
BE=CF

∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF.
∴AD平分∠BAC.
点评:本题考查了角平分线的性质以及全等三角形的判定与性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网