题目内容
如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)(2)的条件下,若AD=3,求BF的长.(计算结果可含根号)
分析:(1)根据题意可求得:∠AFB=∠D,∠BAF=∠AED,由如果两个三角形的两个对应角相等,那么这两个三角形相似,可证得△ABF∽△EAD;
(2)由直角三角形的性质,即可求得;
(3)根据相似三角形的对应边成比例,求得.
(2)由直角三角形的性质,即可求得;
(3)根据相似三角形的对应边成比例,求得.
解答:(1)证明:∵AD∥BC,
∴∠C+∠ADE=180°.
∵∠BFE=∠C,
∴∠AFB=∠EDA.
∵AB∥DC,
∴∠BAE=∠AED.
∴△ABF∽△EAD.
(2)解:∵AB∥CD,BE⊥CD,
∴∠ABE=90°,
∵AB=4,∠BAE=30°,
∴AE=
=
=
.
(3)解:∵△ABF∽△EAD,
∴
=
,
=
.
∴BF=
.
∴∠C+∠ADE=180°.
∵∠BFE=∠C,
∴∠AFB=∠EDA.
∵AB∥DC,
∴∠BAE=∠AED.
∴△ABF∽△EAD.
(2)解:∵AB∥CD,BE⊥CD,
∴∠ABE=90°,
∵AB=4,∠BAE=30°,
∴AE=
AB |
cos∠BAE |
4 | ||||
|
8
| ||
3 |
(3)解:∵△ABF∽△EAD,
∴
AB |
AE |
BF |
AD |
4 | ||||
|
BF |
3 |
∴BF=
3 |
2 |
3 |
点评:此题考查了相似三角形的判定和性质:
①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;
③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等.
①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;
③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等.
练习册系列答案
相关题目
如图,在平行四边形ABCD中,AB=2
,AO=
,OB=
,则下列结论中不正确的是( )
2 |
3 |
5 |
A、AC⊥BD |
B、四边形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |