题目内容
【题目】如图,直线y=x+6与反比例函数y=(k>0)的图象交于点M、N,与x轴、y轴分别交于点B、A,作ME⊥x轴于点E,NF⊥x轴于点F,过点E、F分别作EG∥AB,FH∥AB,分别交y轴于点G、H,ME交HF于点K,若四边形MKFN和四边形HGEK的面积和为12,则k的值为_____.
【答案】9.
【解析】
容易知道四边形ANFH、AMEG、AMKH为平行四边形,根据M、N在反比例函数的图象上,利用平行四边形的面积公式就可以求出它们的面积,从而确定两者的数量关系.
解:∵HF∥AN,NF∥ME,EG∥AM
∴四边形ANFH、AMEG、AMKH为平行四边形,
∴S平行四边形AMEG=MEOE=k,S平行四边形ANFH=NFOF=k,则S平行四边形AMEG+S平行四边形ANFH=2k,
∵四边形MKFN和四边形HGEK的面积和为12,
∴2S平行四边形AMKH+12=2k,
∴S平行四边形AMKH=k﹣6,
设点M、N的坐标分别为(x1,y1),(x2,y2),
将y=x+6与反比例函数y=联立并整理得:3x2﹣24x+4k=0,
∴x1+x2=8,x1x2=,
则S平行四边形AMKH=k﹣6=MKx1=NFx1=x1y2=x1(﹣x2+6)=﹣x1x2+6x1=﹣k+6x1,
∴6x1=2k﹣6,即x1=k﹣1,则x2=8﹣x1=9﹣k,
∴x1x2==(k﹣1)(9﹣k),
解得:k=9,
故答案为9.
【题目】为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,
学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统
计并制作了如下的频数分布表和扇形统计图:
组别 | 做家务的时间 | 频数 | 频率 |
A | 1≤t<2 | 3 | 0.06 |
B | 2≤t<4 | 20 | 0.40 |
C | 4≤t<6 | a | 0.30 |
D | 6≤t<8 | 8 | b |
E | t≥8 | 4 | 0.08 |
根据上述信息回答下列问题:
(1)a= ,b= .
(2)在扇形统计图中,B组所占圆心角的度数为 .
(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?
【题目】某中学的一个数学兴趣小组在本校学生中开展了主题为“雾霾知多少”的专题调查括动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A.非常了解”、“B.比较了解”、“C.基本了解”、“D.不太了解”四个等级,将所得数据进行整理后,绘制成如下两幅不完整的统计图表,请你结合图表中的信息解答下列问题
等级 | A | B | C | D |
频数 | 40 | 120 | 36 | n |
频率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形统计图中,A部分所对应的扇形的圆心角是 °,所抽取学生对丁雾霾了解程度的众数是 ;
(3)若该校共有学生1500人,请根据调查结果估计这些学生中“比较了解”人数约为多少?