题目内容
【题目】函数的图象的对称轴为直线.
(1)求的值;
(2)将函数的图象向右平移2个单位,得到新的函数图象.
①直接写出函数图象的表达式;
②设直线与轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.
【答案】(1)m=3;(2)①;②.
【解析】
(1)根据二次函数的对称轴公式可得关于m的方程,解方程即可求出结果;
(2)①根据抛物线的平移规律解答即可;
②根据二次函数的性质以及一次函数的性质,结合图象只要满足直线与y轴的交点的纵坐标大于抛物线与y轴交点的纵坐标解答即可.
解:(1)∵的对称轴为直线,∴,解得:m=3;
(2)①∵函数的表达式为y=x2-2x+1,即为,
∴图象向右平移2个单位得到的新的函数图象的表达式为;
②∵直线y=﹣2x+2t(t>m)与x轴交于点A,与y轴交于点B,
∴A(t,0),B(0,2t),
∵新的函数图象G的顶点为(3,0),与y的交点为(0,9),
∴当线段AB与图象G只有一个公共点时,如图,2t>9,解得t>,
故t的取值范围是t>.
练习册系列答案
相关题目