题目内容
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 cm/s的速度向点D运动,过P点作矩形PDFE(E点在AC上),设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8).
(1)经过几秒钟后,S1=S2?
(2)经过几秒钟后,S1+S2最大?并求出这个最大值.
【答案】(1) t=4 (2) t=6
【解析】
分别根据运动方式列出面积S1,S2关于t的函数关系,第一问令面积相等,第二问配方求最值.
解:S1=×8×t=8t,S2=t(8-t)=-2t2+16t,(1)由8t=-2t2+16t,解得t1=4,t2=0(舍去),∴当t=4秒时,S1=S2
(2)∵S1+S2=8t+(-2t2+16t)=-2(t-6)2+72,∴当t=6时,S1+S2最大,最大为72
练习册系列答案
相关题目