题目内容

已知二次函数y=ax2+bx+c(a≠0),给出下列四个判断:(1)a>0;(2)2a+b=0;(3)b2-4ac>0;(4)a+b+c<0;以其中三个判断为条件,余下一个判断作结论,其中真命题的个数有(  )
A.1 个B.2 个C.3 个D.4 个
(1)∵①a>0,
∴开口向上,
∵②2a+b=0,
∴对称轴为x=1,
∵③b2-4ac>0,
∴顶点在第四象限,
∴④a+b+c<0正确;
(2)∵①a>0,
∴开口向上,
∵②2a+b=0,
∴对称轴为x=1,
∵④a+b+c<0,
∴顶点在第四象限,
∴③b2-4ac>0正确;
(3)∵①a>0,
∴开口向上,
∵③b2-4ac>0,④a+b+c<0,
∴顶点在第三、四象限,
∴②2a+b=0错误;
(4)∵②2a+b=0,
∴对称轴为x=1,
∵③b2-4ac>0,④a+b+c<0,
∴顶点在第四象限,
∴与x轴有两个交点,
∴①a>0正确.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网